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ABSTRACT 

In this investigation the thermal entrance region problem is solved 
for flow in rectangular ducts of various aspect ratios and for various 
Peclet numbers.    The assumptions under which the problem is solved 
are steady, fully developed laminar velocity profile, constant fluid prop- 
erties of viscosity,  density,  specific heat and thermal conductivity,  con- 
stant wall temperature, and a uniform inlet fluid temperature.    Included 
in the solution are axial conduction and viscous dissipation.    The method 
of B. G. Galerkin is used to formulate an approximate series solution of 
the problem.    The data presented include bulk mean temperature, local 
Nusselt number, and the ratio of the local heat-transfer rate to the long 
wall to the local heat-transfer rate to the short wall.    It is concluded that 
for low Peclet numbers,  neglecting the axial conduction term leads to con- 
siderable error in the solution. 
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SECTION I 
INTRODUCTION 

T.l   BACKGROUND INFORMATION 

The problem of the thermal entrance region heat transfer for flat 
ducts (parallel plates) and circular tubes has received considerable 
attention in the literature.    However, the similar problem for ducts 
of finite aspect ratio has been investigated far less thoroughly. 

The heat transfer in laminar flow of an incompressible fluid with 
constant properties in the entrance region of a circular tube was first 
investigated analytically by Graetz (Ref.   1) under the assumption of 
specified uniform wall temperature, no axial conduction, and no viscous 
dissipation.    Prins,  Mulder,  and Shenk (Ref.  2) applied the Graetz 
method to parallel plates under the same assumptions.   Various authors 
(Refs.  3 through 6) have extended the problem to include more complex 
boundary conditions. 

Sparrow (Ref.  7) and Siegel and Sparrow (Ref.  8) solved the parallel 
plate entrance problem for simultaneous development of velocity and 
temperature profiles by use of the von Karman-Pohlhausen method for a 
range of Prandtl numbers for uniform wall temperature and uniform heat 
flux,  respectively. 

Schneider (Ref.  9) included axial conduction in the parallel plate 
solution for slug flow of various Peclet numbers with finite wall resist- 
ance and both uniform and step discontinuity ambient temperature. 

Hwang and Fan (Ref.  10) used finite difference techniques to solve 
the problem of simultaneous development of velocity and temperature 
profiles for parallel plates for uniform wall temperature and uniform 
heat flux.   Yau and Tien (Ref.  11) solved the same problem for flow of 
a non-Newtonian fluid with the use of numerical techniques. 

Mercer,  Pearce,  and Hitchcock (Ref.   12) presented experimental 
data for laminar flow of air between heated plates for Reynolds numbers 
of 300 to 1500. 

For the rectangular duct, Clark and Kays (Ref.  13) used a numer- 
ical relaxation method to obtain limiting Nusselt numbers for laminar 
flow in ducts with aspect ratios of 1, 2, and 5 for constant heat flux and 
aspect ratios of 1 and 2 for constant wall temperature but without con- 
sideration of axial conduction.    Sparrow and Siegel (Ref.   14) developed 
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a variational method for application to rectangular ducts and calculated 
the first two eigenvalues and eigenfunction constants for the square duct 
case for constant heat flux but presented no further information. 

§ 

Dennis, Mercer, and Poots {Ref. 15) used a method similar to the 
Galerkin method to solve the constant temperature wall case for aspect 
ratios of 1, 1. 5, 2, 4, and 8 but did not include axial conduction. 

In this investigation the method of B. G. Galerkin as developed by 
Eraslan (Ref.   16) for entrance regions is used to formulate approximate 
solutions for the thermal entrance region of rectangular ducts of various 
aspect ratios and Peclet numbers.    To be included are axial conduction 
and viscous dissipation. 

1.2  STATEMENT OF THE PROBLEM 

The purpose of this investigation is to solve the thermal entrance 
region problem for flow in rectangular ducts of various aspect ratios 
and for various Peclet numbers.    The assumptions under which the prob- 
lem is to be solved are steady, fully developed laminar velocity profile; 
constant fluid properties of viscosity,  density,  specific heat and thermal 
conductivity; constant wall temperatures; and a uniform inlet fluid tem- 
perature.    To be included in the solution are viscous dissipation and 
axial conduction. 

The assumption of fully developed laminar flow in a thermal entrance 
region is applicable for fully developed flow in a duct where the fluid en- 
counters a step change in duct wall temperature.    It may also be applied 
as an approximation for a combination hydrodynamic, thermal entrance 
region where the velocity profile develops much more rapidly than the 
thermal profile. 

SECTION II 
ANALYTIC PROCEDURE 

2.1   FORMULATION OF THE PROBLEM WITH GOVERNING EQUATIONS AND 
BOUNDARY CONDITIONS 

The mathematical problem is formulated in the Cartesian coordinate 
system (X, Y,  and Z) with Z taken in the direction of the applied pressure 
gradient, dP/dZ.    The origin of the system is taken at one corner of the 
rectangular duct and in the plane at which the thermal entrance region is 
initiated, as shown in Fig.  1. 
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Fig. 1   Flow Geometry 
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For laminar incompressible flow with constant fluid properties and 
fully developed velocity profile, the equation of motion may be written 
as 

32W 32W 

3X^ 3YZ 

dP 
dZ 

(1) 

with the boundary conditions 

W(T) = 0 

where T is the boundary of the duct.    The energy equation may be written 
as 

»c(.wli =  K 32T 

\7Z 
32T 

ax'       3Y' §)• •[( 3W1 

3X, 
3W 
3Y 

(2) 

with boundary conditions 

T(r,Z) = TW 

T(X,Y,0)  = Tn(X,Y) 

Define a new temperature T* as 

T* = T - T, 

= T(X,Y,Z>  - Tf(X,Y,Z) (3) 

where Tf is the fully developed viscous temperature profile.   The energy 
equation then becomes 

p Cp W 
3T*        3Tf 

37"   + 3Z~ ]■■[ 
32T»    + 32T*    + 32T» 

3X" 3Y* 3Z' 

**[&*& *m-m-i*?\ (4) 
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where T* satisfies the equation 

3T* f32T*        32T*        32T* 
pCpwar [ax2 3Y2      + 3Z2  J 

(5) 

For constant wall temperature boundary conditions, 

3Tf 32Tf 
32      "I?" = 0 

and thus Tj satisfies the equation 

32Tf 

3X2 ^]-[i»r+[*n = 0 (6) 

The boundary conditions for T* and Tf are 

T* (r,Z) = 0 

T*  <X,Y,0)  = T0*  <X,Y) 

I im T* = 0 

Z -*■ » 

T, <r,z) = Tu 

2.2  NONDIMENSIONALIZED EQUATIONS 

The mathematical problem is nondimensionalized based on the width 
of the rectangular duct, Lj,  and on the pressure gradient,  dP/dZ, with 
the following variables and parameters: 

u = it w ref 

9  = 
T* 

ref 
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ef " T 
ref 

l   2 
w       = - ~L  df. 
ref u      dZ 

T V wref 
'ref -    p cn  L, 

o = X/L, 

ß = Y/L, 

R = L2/L, 

5 = Z/L( Pe 

Pe = 
p Wref CP Ll (7) 

K 

The variables a, ß, and § are defined on the intervals 

0   S   ß   <   R 

0*5-« (8) 

Substitution into Eq.  (5) for T* gives 

u |f. = £*    +    <?»    + Pe"2   4 (9) 
dt       3a1* 3ß^ 3^ 

with the boundary conditions 

e<r,s) = 0 

6(<x,ß,0>  = eo(a,ß) 

6 
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lim 9(a,ß,£)  = 0 

£ + « (10) 

Substitution into Eq.  (6) for Tf gives 

pr * isri £r <$r  •-«IIBI • ISN u» 

with the boundary conditions 

ef<r,o = ew (12) 

With the substitution 

en = ef - 9w 

Equation (11) becomes 

326n       32en r/3,.\2 
■ j     + —5~     = - Pe IN2 + (»n   (i3) 

with the boundary condition 

en<r,£) = o 

SECTION III 
APPROXIMATE SOLUTION OF THE ENERGY EQUATION BY THE METHOD 

OF B. G. GALERKIN 

From Kantorovich (Ref.  17) the solution of an equation of the form 
L(v) = 0, where L is some linear-differential operator in two variables 
and whose solution satisfies homogeneous boundary conditions, may be 
approximated by the method of B. G. Galerkin by constructing an approx- 
imate solution of the equation in the form 
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n 

V(X. 

1=1 

,Y)  = £     aj  <j>j(X,Y) 

The <?i(X, Y)(i = 1, 2, n) is a chosen set of linearly independent func- 
tions satisfying the boundary conditions and representing the first n func- 
tions of some system of functions 0i(X, Y)(i = 1/2, a>) which is com- 
plete in the given region.    In order that v(X, Y) with n = <•> be the exact 
solution of the given equation, it is necessary that L(v) be identically 
equal to zero.    This requirement, with L(v) considered continuous,  is 
equivalent to the requirement of orthogonality of L(v) to the functions 
<p j(X, Y).   With these conditions the system of n linear equations 

JJ       L(v(X,Y))  *,(X,Y)dX dY = 
D 

//    l\%     3j  *j(X'Y)I*'"' Y)dX dY = 0 

(1   =   |,2, n) 

may be solved for the n unknown coefficients,  C:, to complete the approxi- 
mate solution. 

The assumed form of the approximate solution to Eq.   (9) will be 

K        N 

e<«,8,C>  =  £     ]T   aj
(n)  ♦i(a,ß)e~BnC (14) 

n=l     i=| 

where the functions <j> fa, ß) satisfy the boundary condition 

<fr,<r) = 0 

and possess continuous first- and second-order derivatives in a and ß 
in the region D and on the closed boundary, r, and the ai'n''s are con- 
stants.   The constants a^n) can be determined by the B.  G. Galerkin 
method. 

Substitution of Eq.  (14) into Eq.  (9) and following the method of 
B. G. Galerkin, which involves multiplying the equation by each Q^a, j3) 

8 
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and integrating over the region, D, yields the linear system of equations: 

N 

= 0    (15) i *i(n) f.,(k. 
i = l L 

i) + Bn  l2(k,i) +  (Bn
2/Pe2)   13<K,i) 

k =   1,2,...N 

where the integrals are given by 

I    R 

l((k,i)  =    I   J     V2 <frj(o,ß)  *k(a,ß)  do d$ (16) 
0 o 

1 R 

l2(k,f)  = J   J     u(a,ß)  *.(a,ß)   *k<a,ß)  da dß (17) 
o   o 

l3<k,l)  .    I     I    +|(a,0>  +k(a,0)  da dB 
o   o 

(18) 

Since $ j(a, ß) is the known selected set, the integrals may be eval- 
uated either analytically or numerically for a given velocity profile, 
u(a, ß), to give Eq.   (15) as a system of linear homogeneous equations 
for the undetermined constants,  ai'n'. 

For a nontrivial solution to exist for the a-pn''s, the determinant 
of the coefficients must be identically zero, that is 

Det D|(k,l) + Bn   \2(k,\) + (Bn
2/Pe2)   l3<k,i)] = 0 (19) 

Equation (19) represents a polynomial of at most 2N degree in Bn 

which must be solved for the eigenvalues (Bn's). For each eigenvalue 
there will be a set of (N-l) linearly independent equations for the ai(n)»s 
which may be solved in terms of one of the unknown linear combination 
constants, aj'n', which will remain undetermined. Selecting the par- 
ticular undetermined constant as a--^n', the linear system of equations 
becomes 
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IN 

Y.    CTCn>    I,Ck,i) + Bn  l2Ck,i) + (Bn
2/Pe2)   l3(k,i) I    = 

1=2 L J 

"  ['l(k' ) + Bn   l2(k,l) + (Bn
2/Pe2)   l3(k,l) 

k = 2,3,  ...N (20) 

where 

C,(n) = a>>/a,<n>      (i * 2) 

With the solution of the CjM's from the system of Eq.  (20), the 
approximate solution of Eq.  (9) becomes 

6(a,ß,5) = -I ai(n)k{a 
n=l L 

N 

i=2 
C,vn'  $,(a 

1   -Bn^ 
,"•> e (21) 

The constants a.^11' may then be determined from the inlet boundary 
conditions given for Eq.  (10), 

M M r N -j 

e(a,3,o)= £     ai<n)k<«.ß) +Y   c!(n)   ♦|t«,ß>   ■ e0(o,B) 
n=l L 1=2 J 

(22) 

which specifies the function 6Q(a, ß) as a linear combination of known 
functions. 

The constants ai *n* may now be determined by the application of an 
extension of the Weirstrass approximation theorem (Ref. 20).    Hence, 
multiplication of Eq.  (22) by 

+,(a,6> +     jT    Cj(n)   ♦,<of6> 
j=2 

and integration over the region D gives 

10 
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M r 1 

Y     a|(n)     IU,n)    = J(JU, I =   1,2, M (23) 

where the integrals in Eq.  (23) are specified as 

I    Rr N 

(A,n>  =     I    I +,(a,0)  +    Yt   Ci<n) *j(ot'ß) 

o    oL i=2 

♦|(of0) 

J-2 
da dß 

and 

JU) 

I    R r N -i 

f J     80(o,e)     ♦,(af8)+   ]T   Cj(n)  <frj(a,e) 
o   o L j=2 J 

da dß 

(24) 

(25) 

Since the C^n)ts Q^Q determined from Eq.   (20), Eq.   (23) represents 
a nonhomogene cms system of M linear equations in M unknowns, a^'11', 
which has a unique solution for | 0o(o, ß)| > 0.    For the thermal entrance 
region problem to exist, the condition is satisfied since 0o(a, ß) repre- 
sents the difference between the duct inlet temperature and the fully de- 
veloped temperature profiles.    Therefore, the a^fa^'s can be determined 
to give a complete approximate solution of the thermal entrance region 
problem. 

SECTION IV 

NUMERICAL RESULTS 

4.1   NUMERICAL PROCEDURE 

The general method, developed in the previous section for Eq.  (9), 
was used to approximate the solution of the thermal entrance region heat 
transfer for rectangular ducts of aspect ratio 1, 2, 5,  and 10 and for 
Peclet numbers, based on the pressure gradient and the velocity nondi- 
mensionalization parameter, of 10,  100, 300, and 1000 for each aspect 
ratio. 

11 
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The uniform wall temperature boundary condition and the resulting 
symmetry about the duct centerlines allowed the selection of the func- 
tions <i ^(a, j3) to be of the form 

♦ ,(a,6)  ■ sin p na sin q irß/R (26) 

where p and q are pairs of odd integers corresponding to i. 

For the special case of the square duct, the extra symmetry of the 
equal wall lengths allowed the functions, d>j{a, ß), to be written in the 
double form 

4|(a,0)  = sin p ira sin q nß + sin q na sin p ir$        (27) 

where p and q again are odd integers corresponding to i.    This, in turn, 
allowed a smaller number of functions to be used for the square duct 
solution with a consequent decrease in computation time required.    It 
was found, by solving specific cases with different numbers of functions, 
that ten functions for the square cases and 15 functions for the nonsquare 
cases gave satisfactory convergence. 

The equation of motion (Eq.  (1)) was solved in terms of a double 
Fourier series for the velocity profile.    The solution is given as Eq. 
(1-14) in Appendix I.    The integrals, Ii(k, i), l2(k,i),  and IßCk, i), were 
integrated analytically.   The integration is given in Appendix III.    This 
allowed a general expression for the elements of the determinant (Eq. (19)) 
to be determined in terms of the indices k and i. 

The determinant was found to be diagonally dominant, and the roots 
of the determinant, Bn's, were evaluated by use of the maximum diag- 
onal pivot Gaussian reduction technique with the final iteration by the 
method of reguli-falsi.   The Bn's were sufficiently iterated to guarantee 
an accuracy of eight significant digits. 

Table I gives the integer pairs (p,q) for the functions (j>i(a,ß).   It 
should be noted that this is a triangular truncation of the approximating 
series.    It was found that this gave quicker convergence than a square 
truncation for this type of solution where the coefficients are determined 
from a set of linear nonhomogeneous equations.    However, this is not 
necessarily true for a series such as that found for the velocity profile 
solution,  Eq.  (1-14),  in Appendix I. 

12 
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INTEGER PAIRS (P, q) FOR THE FUNCTIONS 0, (a, ß) 
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R ¥  1 R = 1 R = 1 

1 Pe = 10, 100, 300, 1000 Pe = 100, 300, 1000 Pe = 1, 10 

1 IJ 1,1 1,1 

2 1,3 1,3 1,3 

3 1,5 1,5 1,5 

4 1,7 1,7 1,7 

5 1,9 1,9 1,9 

6 3,1 l,H 1,11 

7 3,3 3,3 3,3 

8 3,5 3,5 3,5 

9 3,7 3,7 3,7 

10 5,1 5,5 3,9 

II 5,3 

12 5,5 

13 7,1 

14 7,3 

15 9,1 

13 
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Tables II through VII give the eigenvalues for the cases of aspect 
ratios 1, 2,  5,  and 10 and Peclet numbers 10,   100, 300, and 1000.    Also 
included are the cases of aspect ratio 1. 5 and Peclet number 1000 and 
aspect ratio 1 and Peclet number 1. 

TABLE II 
EIGENVALUES AND INTEGER PAIRS FOR ASPECT RATIO 

OF 1 AND Pe OF 1 AND 10 

p q 
Bn 

Pe = 1 Pe = 10 

1 i 4.41418 x 10° 4.16395 x I01 

1 3 9.91052 x 10° 9.69653 x I01 

3 3 1.33097 x I01 1.31405 x I02 

1 5 1.59962 x I01 1.57925 x I02 

3 5 1.82987 x I01 1.81228 x I02 

1 7 2.21918 x I01 2.19889 x I02 

3 7 2.39072 x I01 2,37424 x I02 

1 9 2.84257 x I01 2.82231 x I02 

3 
i 

9 2.97854 x I01 2,96222 x I02 

1 II 3.46775 x I01 3.44763 x I02 
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TABLE III 
EIGENVALUES AND INTEGER PAIRS FOR ASPECT RATIO 

OF 1 AND Pe OF 100, 30Q AND 1000 

p q 
Bn 

Pe = 100 Pe = 300 Pe = IUU0 

1 i 2.40433 x 02 3.19609 x 02 3.36964 x I02 

1 3 7.80820 x 02 1.51035 x O3 1.94644 x I03 

3 3 1.15619 x 03 2.62382 x 03 4.09313 x I03 

1 5 1.38884 x 03 3.15950 x 03 4.99693 x I03 

3 5 1.64573 x 03 4.01269 x 03 7.34183 x I03 

1 7 2.00434 x 03 4.91449 x 03 9.07017 x I03 

5 5 2.05702 x 03 5.40188 x 03 1.21179 x I04 

3 7 2.22453 x 03 5.84892 x 03 1.32607 x I04 

1 9 2.62970 x 03 6.76701 x 03 1.40835 x I04 

1 II 3.25869 x 03 8.72051 x 03 2.10690 x I04 
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TABLE IV 
EIGENVALUES AND INTEGER PAIRS FOR ASPECT RATIO 

OF 1.5   AND Pe OF 1000 

p q 
Bn 

Pe = 1000 

1 i 1.76879 X o2 

1 3 7.25395 X o2 

3 1 1.38991 X o3 

1 5 1.79159 X O3 

3 3 2.27422 X O3 

3 5 3.76529 X 03 , 

1 7 3.82280 X I03 

5 1 4.20636 X 03 

5 3 5.80292 X I03 

7 1 8.21247 X I03 
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TABLE V 
EIGENVALUES AND INTEGER PAIRS FOR ASPECT RATIO 

OF 2 AND Pe OF 10, 100, 300, AND 1000 

p q % 
Pe = 10 Pe = 100 Pe = 300 Pe = IÖOÖ 

1 i 3.08423 x o1 1.18467 x O2 1.31451 x I02 1.33316 x I02 

1 3 5.28847 x o" 2.96333 x O2 3.85064 x 02 4.03407 x I02 

1 5 8.09030 x o1 5.47520 x O2 8.35539 x 02 9.24158 x I02 

3 1 9.19682 x o1 6.54024 x O2 1.05383 x O3 1.19538 x I03 

3 3 1.02318 x 02 7.84682 x O2 1.38913 x 03 1.66049 x I03 

1 7 1.10675 x o2 8.27962 x O2 1.43639 x 03 1.70509 x I03 

3 5 1.19715 x 02 9.64982 x O2 1.87316 x 03 2.42366 x I03 

1 9 1.41147 x o2 1.14109 x O3 2.31374 x 03 3.21220 x I03 

3 7 1.41921 x o2 1.20110 x O3 2.48366 x O3 3.27438 x I03 

5 1 1.54327 x o2 1.25707 x O3 2.63597 x 03 4.02052 x I03 

5 3 1.60993 x 02 1.36135 x O3 2.87559 x o3 4.14845 x I03 

-5 5 1.72741 x 02 1.51392 x O3 3.53555 x o3 6.01251 x I03 

7 1 2.16938 x 02 1.87356 x O3 4.14751 x o3 6.36712 x I03 

7 3 2.21957 x o2 1.98928 x O3 4.80427 x o3 8.88796 x I03 

9 1 2.79692 x o2 2.51698 x 03 6.16419 x o3 1.20650 x I03 
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TABLE VI 
EIGENVALUES AND INTEGER PAIRS FOR ASPECT RATIO 

OF 5 AND Pe OF 10, 100, 300, AND 1000 

p q In 
Pe = 10 Pe = 100 Pe = 300 Pe = 1000 

i 2.71323 x o' 8.82645 x o1 9.45499 x O1 9.53839 x I01 

3 3.19397 x o' 1.18039 x 02 1.29705 x 02 1.31344 x I02 

5 3.98096 x o1 1.70549 x 02 1.95330 x 02 1.99152 x I02 

7 4.94473 x o1 2.41554 x 02 2.91486 x O2 3.00176 x I02 

9 6.01129 x o1 3.35243 x 02 4.41311 x O2 4.64455 x I02 

3 1 9.03114 x o1 6.10023 x 02 9.30171 x 02 1.02871 x I03 

3 3 9.21879 x o1 6.34871 x 02 9.84766 x 02 1.09692 x I03 

3 5 9.55470 x o1 6.75797 x O2 1.08452 x 03 1.22914 x I03 

3 7 1.00300 x o2 7.47551 x 02 1.31498 x 03 1.57715 x I03 

5 1 1.53107 x o2 1.21204 x 03 2.29434 x 03 2.90775 x I03 

5 3 1.54326 x o2 1.23440 x 03 2.38673 x 03 3.09339 x I03 

5 5 1.56509 x o2 
1.29307 x 03 2.67877 x 03 3.77781 x I03 

7 1 2.15909 x o2 1.82828 x 03 3.90311 x 03 5.66938 x I03 

7 3 2.16910 x o2 1.87311 x 03 4.24036 x 03 6.97333 x I03 

9 1 2.78759 x o2 
2.46842 x 03 5.89038 x 03 1.09241 x I04 
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TABLE VII 
EIGENVALUES AND INTEGER PAIRS FOR ASPECT RATIO 

OF 10 AND Pe OF 10, 100, 300, AND 1000 

p q 
Bn 

Pe = 10 Pe = 100 Pe = 300 Pe = 1000 

1 2.66084 x o1 8.49501 x O1 9.07163 x O1 9.14761 x I01 

3 2.78789 x o1 9.20748 x o1 9.88936 x O1 9.98038 x I01 

5 3.02449 x o1 1.05706 x o2 1.14767 x 02 1.16006 x I02 

7 3.34911 x o1 1.25430 x o2 1.38313 x o2 1.40138 x I02 

9 3.74307 x O1 1.52746 x o2 1.72788 x o2 1.75807 x I02 

3 1 9.01022 x O1 6.06540 x 02 9.22175 x o2 1.01866 x I03 

3 3 9.05687 x O1 6.11968 x 02 9.33374 x o2 1.03235 x I03 

3 5 9.14621 x 01 6.23653 x 02 9.62644 x o2 1.07083 x I03 

3 7 9.27769 x O1 6.51246 x 02 1.04882 x I03 1.19224 x I03 

5 1 1.52964 x 02 1.20916 x o3 2.28500 x I03 2.89177 x I03 

5 3 1.53264 x 02 1.21497 x 03 2.31009 x I03 2.94085 x I03 

5 5 1.53871 x O2 1.23987 x 03 2.46839 x o3 3.33297 x I03 

7 1 2.15795 x 02 1.82484 x 03 3.88155 x I03 5.60739 x I03 

7 3 2.16058 x 02 1.84707 x 03 4.II7II x I03 6.59961 x I03 

9 1 2.78647 x 02 2.46319 x 03 5.86196 x I03 1.08121 x I04 
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For the lower Peclet numbers the integrals I^(k, i) and ^(k, i), as 
specified by Eqs.   (16) and (18),  respectively,  dominate the determinant 
to the extent that two integer pairs with the same value of the sum 
(p2 + q2/R2) produced nearly equal eigenvalues.    For the cases of aspect 
ratio 1 and Peclet numbers 1 and 10, the eigenvalues produced by the 
pairs (1,7) and (5, 5) differed only in the fifth significant digit.    This was 
close enough to produce difficulty in evaluating the nonhomogeneous sys- 
tem, Eq.  (23),  and as shown in Table I for these cases, the integer pair 
(3, 9) was substituted for the pair (5, 5). 

It was found that each function <j>i(a, ß) produced an eigenvalue, and 
for the lower Peclet numbers it was possible to identify which function 
generated which eigenvalue on the basis of the value of p2 + q2/R2.   In 
Tables II through VII the eigenvalues are listed in ascending order. 
Listed with the eigenvalues are. the integer pairs which generated them. 

The inlet temperature boundary condition 9Q(a,ß), which was defined 
as the difference between the temperature at the duct inlet and the final 
developed viscous temperature profile, was written as 

eo(a,ß)  =    A6T -    8nCo,8) (28) 

where A0T is the temperature difference between the constant tempera- 
ture inlet condition and the uniform'wall temperature,  and 0w(a, j3) is the 
solution of the transformed viscous dissipation equation given as Eq. 
(II-10) in Appendix IE. 

The constants a^n' from Eq. (23) were solved for by the maximum 
diagonal pivot Gaussian reduction technique. With separation of the in- 
let boundary conditions into nonviscous and viscous dissipation compon- 
ents, two sets of constants, a^x ar*d air/n', were solved for during 
the same matrix reduction. This was accomplished by writing Eq. (25) 
for J(i) as 

J(i) = JXU) - JnU> (29) 

where 

I    R 

JXU) =  /    / U,(a,e) +      V    C,<n)    +,(0,6)1 da dB (30) :t)-J   J  U|(a,e) +      £    Cj<">    ♦jCa.B) 
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and 

J u> n 

1 R r N l 
J J va,ß) *|(o,B) + Z cj(n) *j(°'ß) 

°    °        n L J-2 
da dß 

= \ f     Y       Y   Vs'+) sin s,rois,n + uß/R 

°    °        s=l,3,5..  t=l,3,5.. 

r        N 

L J=2 

(n) 
t,ß> Crw"   <|>j<a,ß> |   da dß (31) 

and by specifying J;\U) and J^U) as separate column vectors in the 
matrix solution for ai^W and ai^'11'.    Given in Appendix IV as Eqs. 
(IV-1) through (IV-9) are the integrated solution forms for Eq.  (24) 
for 1(4, n) and Eqs.  (30) and (31) for J\U) and Jn(i). 

The temperature solutions now become, for the nonviscous com- 
ponent, 

9x(a,ß,0   ■ A6T    2_     alA 
n=l 

M r 

T    E     alA(n> *'(a'e) 

n=l L 

N T 

1=2 J 

and for the viscous component, 

9n(<*,B,£)  = Pe 

M 

I  <0: 
n=l 

(fr,(a,ß) + 

(32) 
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N 

1=2 

(n) *j(o,B) 
"Bn5 

e (33) 

4.2  RESULTS 

Of primary interest in this study are the bulk mean temperature, 
0m, as specified by Eqs.  (IV-10) through (IV-14) in Appendix IV, the 
Nusselt numbers, Nu, as specified by Eqs. (IV-20) and (IV-21) in 
Appendix IV, and the ratio of the long-to-short wall heat-transfer rates, 
Qj3/Qa. as may be determined from Eqs.  (IV-15) through (IV-19) in 
Appendix IV. 

Figure 2 gives the nondimensionalized mean velocity, i^, as eval- 
uated from Eq.  (1-17), as a function of aspect ratio.    It is this mean ve- 
locity which must be multiplied by the Peclet number used in this study 
to obtain the more standard Peclet number. 
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I 1           1 I          i          I          I           1           I 

10 

Fig. 2  Mean Velocity versus Aspect Ratio 
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Figure 3 gives a comparison of the nonviscous component of the 
bulk mean temperature for aspect ratio of 10 and Peclet numbers of 
1000 and 100 to that given by Ref.  2 for the parallel plate solution with 
no axial condition.    The parameter,   Pe,  is the Peclet number based on 
the mean velocity for parallel plate flow as used by Ref. 2.    Figure 4 
gives a comparison of the nonviscous component of the bulk mean tem- 
perature for aspect ratio of 1 and Peclet numbers of 1000 and 100 to 
that given by Ref.   15 for no axial conduction.    For aspect ratio of 1, 
the Peclet number of 1000 as used in this study corresponds to a 
Peclet number, based on the mean velocity, of 35'.    The data from 
Ref.   15 should be applicable for Peclet numbers, based on the mean 
velocity, of 100 and above.    It may be seen from this figure that ignor- 
ing axial conduction for low Peclet numbers can give considerable error. 

1.0 

R =  10 ^ Pe =   100 

Para I lei Pla+es 
(Ref. 2) 

i- 
<D 
< 

E as 

0 
0.2 0.4 0.6 0.8 .0 

Z/L,Pe 

Fig. 3  Bulk Mean Temperature for Aspect Ratio of 10 and Parallel Plates 
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Fig. 4   Bulk Mean Temperature for Aspect Ratio of 1 
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Figures 5 through 8 give the nonviscous component of the bulk mean 
temperature for aspect ratios of 1,   2,   5,  and 10,  respectively, with the 
Peclet number as a parameter.    Figures 9 through 12 give the same tem- 
perature distribution for Peclet numbers 10,   100,  300,  and 1000,  respec- 
tively, with the aspect ratio as a parameter. 
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Fig. 5   Bulk Mean Temperature for Aspect Ratio of 1 and Various Peclet Numbers 
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Fig. 6   Bulk Mean Temperature for Aspect Ratio'of 2 and Various Peclet Numbers 
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Fig. 7   Bulk Mean Temperature for Aspect Ratio of 5 and Various Peclet Numbers 
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Fig. 8   Bulk Mean Temperature for Aspect Ratio of 10 and Various Peclet Numbers 
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Fig. 9   Bulk Mean Temperature for Pe of 10 and Various Aspect Ratios 
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Fig. 10   Bulk Mean Temperature for Pe of 100 and Various Aspect Ratios 
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Fig. 11   Bulk Mean Temperature for Pe of 300 and Various Aspect Ratios 
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Z/L, 

Fig. 12   Bulk Mean Temperature for Pe of 1000 and Various Aspect Ratios 
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Figure 13 gives the bulk viscous dissipation mean temperature for 
fully developed flow as a function of aspect ratio. Included is the value 
for the parallel plate solution. 

<D 
CL 
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O 

Fig. 13   Bulk Mean Viscous Temperature for Fully Developed Flow versus Aspect Ratio 
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Figures 14 through 17 give the viscous component of the bulk mean 
temperature for aspect ratios of 1, 2, 5, and 10, respectively, with the 
Peclet number as a parameter.    Figures 18 through 21 give the same 
temperature distribution for Peclet numbers of 10,  100, 300,  and 1000, 
respectively, with the aspect ratio as a parameter. 
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Fig. 14  Bulk Mean .Viscous Temperature for Aspect Ratio of 1 and Various Peclet Numbers 
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Fig. 15   Bulk Mean Viscous Temperature for Aspect Ratio of 2 and Various Peclet Numbers 
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Fig. 16 Bulk Mean Viscous Temperature for Aspect Ratio of 5 and Various Peclet Numbers 
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Fig. 17   Bulk Mean Viscous Temperature for Aspect Ratio of 10 and Various Peclet Numbers 
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Fig. 18  Bulk Mean Viscous Temperature for Pe of 10 and Various Aspect Ratios 
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Fig. 19   Bulk Mean Viscous Temperature for Pe of 100 and Various Aspect Ratios 
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Fig. 20  Bulk Mean Viscous Temperature for Pe of 300 and Various/Aspect Ratios 
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Fig. 21   Bulk Mean Viscous Temperature for Pe of 1000 and Various Aspect Ratios 
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Figure 22 gives the limiting Nusselt number as a function of aspect 
ratio for the various Peclet numbers,  which is .identical for both the 
viscous and nonviscous components.    Plotted in the figure are data from 
Refs.  13 and 15.   The values from Ref.  13 are 2. 89 and 2. 54 for the 
aspect ratios of 1 and 2, respectively, and from Ref.   15 are 2. 98 and 
2. 54.    These values compare well with the values obtained in this study 
for Peclet number of 1000, which are 2.981 and 2. 548. , 

10 

Fig. 22   Limiting Nusselt Number versus Aspect Ratio for Various Peclet Numbers 
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Figures 23 through 26 give the Nusselt number for the nonviscous 
component as a function of distance from the duct entrance for aspect 
ratios of 1,  2, 5, and 10, respectively, with the Peclet number as a 
parameter. 
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Fig. 23   Nusselt Number for Aspect Ratio of 1 and Various Peclet Numbers 
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Fig. 24   Nusselt Number for Aspect Ratio of 2 and Various Peclet Numbers 
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Fig. 25  Nusselt Number for Aspect Ratio of 5 and Various Peclet Numbers 
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Fig. 26  Nusselt Number for Aspect Ratio of 10 and Various Pec let Numbers 
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Eraslan and Snyder (Ref.   18) have shown that for viscous dissipa- 
tion the mean value of the dissipation function over the duct cross sec- 
tion is equal to the product of the pressure gradient and the mean ve- 
locity.    With the values of bulk mean temperature, mean velocity,  and 
Nusselt number for fully developed viscous flow between parallel plates 
obtainable from a closed form solution, it is possible to obtain a more 
accurate estimation of the fully developed viscous dissipation Nusselt 
number for various aspect ratios by means of the ratio of energy dissi- 
pated than is obtainable by differentiating the finite series for the fully 
developed viscous temperature profile.    The Nusselt number may then 
be shown to be 

M M        Um   mTif R   1 
R+T (34) 

where the subscript f denotes parallel plate values and where um and 
9mr) may be obtained from Figs.   2 and 13.    Figure 27 gives the Nusselt 
number obtained by this approach as a function of aspect ratio. 

Fig. 27   Nusselt Number versus Aspect Ratio for Fully Developed Viscous Temperature 
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Figures 28 through 31 give the Nusselt number for the viscous com- 
ponent as a function of distance from the duct entrance for aspect ratios 
of 1, 2, 5, and 10, respectively, with the Peclet number as a parameter. 
These figures show that the Nusselt number for the viscous component 
is not infinite at the duct entrance,  as in the case for the nonviscous 
component, but is given by Fig.  27.    Therefore, the curves in Figs.  28 
through 31 were started at the duct entrance using the values given by 
Fig. 27. 
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Fig. 28   Viscous Nusselt Number for Aspect Ratio of 1 and Various Peclet Numbers 
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Fig. 29   Viscous Nusselt Number for Aspect Ratio of 2 and Various Peclet Numbers 
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Fig. 30  Viscous Nusselt Number for Aspect Ratio of 5 and Various Peclet Numbers 
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Fig. 31   Viscous Nusselt Number for Apsect Ratio of 10 and Various Peclet Numbers 
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Figures 32 through 34 give the ratio of heat-transfer rate long-to- 
short wall as a function of distance from the duct entrance for the 
nonviscous component and for aspect ratios of 2,  5, and 10; respectively, 
for the various Peclet numbers,    Near the entrance to the duct the solu- 
tion converges more rapidly to the long than to the short wall.    For this 
region the heat-transfer rate ratio has been estimated by extending the 
curves as dashed lines. 
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Fig. 32  Heat-Transfer Ratio Long-to-SKort Wall for Aspect Ratio of 2 and Various Peclet Numbers 
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Fig. 33   Heat-Transfer Ratio Long-to-Short Wall for Aspect Ratio of 5 and Various Peclet Numbers 
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Fig. 34  Heat-Transfer Ratio Long-to-Short Wall for Aspect Ratio of 10 and Various Peclet Numbers 
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Figures 35 through 37 give the ratio of heat-transfer rate long-to- 
short wall as a function of distance from the duct entrance for the vis- 
cous component and for aspect ratios of 2, 5,  and 10, respectively, for 
the various Peclet numbers.   Again, near the entrance of the duct, the 
ratios have been estimated by dashed lines. 
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Fig. 35 Viscous Heat-Transfer Ratio Long-to-Short Wall for Aspect Ratio of 2 and Various Peclet 

Numbers 
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Fig. 36   Viscous Heat-Transfer Ratio Long-ta-Short Wall for Aspect Ratio of 5  and 

Various Peclet Numbers 
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SECTION V 

GENERAL CONCLUSIONS 

It is concluded that the B. G. Galerkin method may be used to solve 
the thermal entrance region heat-transfer problem for laminar flow of a 
constant property fluid in rectangular ducts with axial conduction and 
viscous dissipation included if consideration is given to avoiding near 
multiple roots for the eigenvalues. 

The separation of the inlet boundary conditions into viscous dissipa- 
tion and nonviscous dissipation components allowed a solution to be ob- 
tained which was general for the duct entrance to wall temperature dif- 
ference, A9»r.    The combination of the viscous and nonviscous compon- 
ents gives the solution for the inlet boundary conditions as stated in 
Section 1.2.    The nonviscous component alone will give the solution for 
no viscous dissipation and uniform temperature inlet,  as well as for fully 
developed viscous temperature flow with a step change in wall tempera- 
ture in the Z-direction.    The viscous component alone will give the solu- 
tion of viscous temperature flow for the condition of uniform inlet tem- 
perature equal to a uniform wall|temperature. 

The solutions for the thermal entrance region in rectangular ducts 
with constant wall temperature conditions verify the fact that for low 
Peclet numbers, the few previous cases solved for no axial conduction 
can be in considerable, error. 
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APPENDIX I 
SOLUTION OF THE EQUATION OF MOTION FOR THE VELOCITY PROFILE 

Given the equation of motion (Eq.  (1)) 

3X*       3Y 

and nondimensionalizing with 

32W        32W        I    dP ,T  1V 
7?   + a^7   " p    dT U"1* 

w _   _   Ll2     dP       W /TO\ wref —   dZ = ü P 2> 

and 

L, - a. fr (i-3) 

the equation becomes 

Wref    f32u     .  32u \        I  dP (i_4) 

I?"   la?      a?|   =yBZ 

or 

^% + ai = -1 (i-5) 
Za?        36^ 

The boundary conditions are 

Lt<D = 0 (1-6) 

The solution may be obtained using the finite Fourier sine transform 
as given by Sneddon (Ref. 19). Taking the transform of both sides of the 
equation 
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//(& O     O 

3zu      a^u1 

3a2        302 
sin m irasin —F?     da d0  = 

I    R 

-// o   o 
sin m ira sin J2IÜ da dB 

R (1-7) 

the transform of the left side of the equation with the specified boundary 
conditions becomes 

-IT (m?+ p)j A(m>n> (1-8) 

The transform of the right side becomes 

 a-   I cos irnr -  I I    cos mr    -  I I (1-9) i 

mnw 
C2] \jZl for m and n odd 

■ 0 for morn even 

(I-10) 

(I-11) 

Then 

A(m , 16  I 'n)  =    ?[ R2m3n+mn3 (1-12) 

The solution then becomes 

I I u =       z—i £_, A(m,n) sin m ira sin EI5.        (1-13) 
m=l,3,5...     n=l,3,5... 

or 
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-     I I 
m=l,3,5...    n=l,3,5... 

16 ["        R2 
ff4 I R2m3n+mn- 

. ,    nirß ... 
sin m wo sin -v- (1-14) 

The mean velocity may then be determined as 

I    R 

"m //- 
dadS/R (1-15) 

o   o 

or 

I    R 

// o   o _4 

m 

R2m^n+mn5 
sin m wo sin Hl£ dadß lii2.dadß (1-16) 

K 

Then 

m TT1 

6f 
6 

m' 173,5...    n-TTsA..  l^4^4] 
(1-17) 
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APPENDIX II 
SOLUTION OF THE VISCOUS DISSIPATION TEMPERATURE PROFILE 

Equation (13) for the viscous dissipation temperature profile 

3aZ 3ß2 
= _ pe 

3ul 
3a i 

/3u|2 

38 
(II-1) 

with boundary conditions 

Vr,£) - 0 

may be solved using the finite Fourier sine transform.    Taking the 
transform of both sides as 

I     R 

// 
o    o 

3^9 a20 
-i       .  —_n    I sin p na sin q 2ÜÜ dadß = 

3a^ 30' R 

- Pe 

I     R 

// 
o    o 

[3u 
,3a 

3u 
36 sin p ira s>n q 2LÄ dadß 

R 
(II-2) 

the transform of the left side as given by Sneddon (Ref.  19) becomes 

2  r.2 + £i R T(p,q) n"    'P    T SI   4 (II-3) 

From the velocity solution 

W2-(?)   T.    1     Y.     Z 1  ' m=l,3,5 n-1,3,5 s=l,3,5 t-I,3,5 

TTR' 

R2m2n+n3 
TTR2 

R2s2t+t5 ] 
cos m Tra sin n li   cos s na sin t li 

R R (II-4) 
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and 

l3ui2^l I    Z    Z    L 
m i=l,3,5    n=l,3,5    s=l,3,5    t=l,3,5L 

TiR irR 

R2m3+mn2 R2S3+st2 

sin m ira cos n IE. sin s ira cos t IE. 
(n-5) 

The right side then becomes 

-Pe 
I6\2 

m        n      4*      t     I (R2m2n+n3)(R2s2t+t3) 

//     cos m ira cos  s ira sin p ira sin n I§. sin t I§. sin q ffß 
J R R Tf o   o 

dadB ♦ II z z. m        n        s        t 

7T2R2 

n*       s        t    \(R2m3+mn2)(R2s3+st2) 

I     R - 

// sin m ira sin  s na sin p ira cos n IE, cos t IE. sin q IE dadß I (II-6) 
J R R R o   o J 

By use of trigonometric identities for multiple angles the first inte- 
gral becomes 

I 
o   o TS 

sin  (m +  (s+p))iro - sin  (m -  (s+p))ira 

- sin  (m + (s-p))im + sin  (m -  (s-p))na sin  (n + (t-q))lL 
R 

+ sin (n-(t-q))l£.- sin (n+(t+q))l£ 
R R 

da dß 

sin (n-(t+q)>l£ 

(II-7) 
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which, on integration, becomes 

i 
■ I I        , 

m+Ts+pT       m-(s+p)      m+(s-p)      m 

' ,        I I I 
m+(+-q)    T n-(t-q)'      n+<t+q)  " n-(t+q) 

.   1 
=7FpT| 

] 
(II-8) 

and exists only for p and q = 1,3,5 since m, n, s, and t are odd 
and 

I 

/ 
sin n trotda = 0 for n even 

By the same process the second integral becomes 

R     [       I         .         I _        I I       1 
7?   I m+(s-p)      m-(s-p) m+(s+p) m-(s+p)J 

[       I                   I I ,         1       1 
[n+(t+q)  ' ri-(t+q) n+(t-q) n-(t-q)J 

I I  
n+(t+q)  " ri-(t+q)  ~ n+l 

and exists only for p and q = 1,  3,   5 -- 

The final solution then becomes 

L-. L* fs<p,q> 8n(o,ß)  = Pe        ^ t_ji ,s, 
p=l,3,5..     q-1,3,5.. 

sin p net sin q v& 
R 

(II-9) 

(11-10) 

where 

Mp.q>  = 
256 R4 

-10 R2p2+q2 
[[[I 
m        n s        t 
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R' 
l(R2m2n+n3)(R2s2t+t3) 

I I I + I 
m+(s+p)  " m-(s+p) " m+(s-p)      m-(s-p) 

i , ■ ■ _ ' 
n+(t-q)       n-Ct-q)  " n+Ct+q)       rvTt+qT 

I 

I I 
m+(s-p)       m-(s-p)       m+(s+p)  " m-(s+p) 

(R2m3+mn2)(R2s3+st2) 

I I I 
n+Ct+q)  " n-(t+q) " n+(t-q) 

n-(t-q) (II-ID 
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APPENDIX III 

SOLUTION OF THE INTEGRALS FOR l1r l2, AND 13 

For approximating functions of the form 

+ 1  = sin p ira sin q lg. (III-l) 

where p and q are functions of i and for the velocity solution 

u = 4 L L I ^- I sin mffosin n l| /III_2) 
IT4      UM .3,3...    n=lT3,5...\R2m3n+mn3J R <m A> 

and 

R 

I, «k,i) - /  J     v2 +,(a,0)  <frk(a,ß)  dadß (III-3) 

o    o 

V2 +,(.,») = - *2  (P2 + q2/*2' sin p *. sin q l| (ni"4) 

then 

1      r\ 

I ,(k,i>  =   j     I       - ir2  (p2 + q2/R2)  sin p ira sin s ira sin q ü| 

o    o 

sin t Hi   dadß (III-5) 
R 

where p = s and q = t for k = 1 

l,(kfl) - - n2(p2 + q2/R2)  R    for k =   i (In_6) 

l,(k,I) = 0 for k * I (HI-7) 
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For 

I    R 

l2<k,i)  =J   J     u(a,ß)  (frj(a,ß)  *k(o,ß) da dß (III-8) 
o   o 

then 

I    R 

.»■ä //    I      £   (- n*      o    o     m=l,3,5    n=l,3,5 ^F 

R2 
2 n4     J    -^      „_Hi *    „_f-* R  lR2m3n+mn3 

sin m ira sin p TTO sin s ira sin nJLi sin ql£. sin + üJ.da dß (III-9) 
R R R 

which,  with the use of trigonometric identities, becomes 

I       R / 2 

i2(kfD - Xf J J   Y.       Z     HäW 
o      o    m=i,3,5..     n=i,3,5.. \ 

[sin  (m+(p-s))tra + sin(m-(p-s) )na - si Mnt(p+s> )na - si n(m-(p+s) Hal 

Isin   (n+(q-t)) 2Li + sin   (n-(q-t)l »£ - sin   (n+(q+t)![g. 
L R R R 

-  sin   (n-(q+t)) l|l da  dß (111-10) H]- 
Since p,  q,  s,  and t may be specified as odd integers because of 

symmetry about the duct centerlines, the solution then becomes 

2 „6      m=|,3,5..     n=l,3,5..       R2m3n+mn3      m+(p-s) 

m-(p-s)       m+Tp+sT     m-<p+s) M n+(q-t)       n-(q-t) n+Tq+tT 
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^n-1 (III-n> 

where i corresponds to the pair of integers (p, q),  and k corresponds to 
the pair of integers (s,t).    For 

I     R 
l3(k,i) =     f   r*,(a,ß) <|>k<a,ß)  do dß (111-12) 

o    o 

then 

I     R 

i,(k,i) =    /    I  sin p no sin s ira sin q i| sin tl|'do dB    <IU"13) 

J    J R R 
o    o 

l3(k,i> = R/4  for k =   i (III-14) 

= 0 for k j« i (III-15) 

For the special case of the square duct where the eigenfunctions 
used are 

$|(a,ß)  = sin p no sin q irß + sin q wo sin p irß                        (III-16) 

the integrals may be shown to be 

l,(k,i>  = - iT2(p2 + q2)/2    k ■  i   and p i q (111-17) 

l|(kjj)  = _ ^(p2 + q2) k =  i   and p = q                 (III-18) 

l,(k,i) = 0        k iM (IE-19) 
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l2(k,i) =    4 

ir°      m=l,3,5..    n=l,3,5..     lm
5

n+mn3i 

m+(p-s) + m-(p-s) " m+Tp+sT " m-(p+s) I   n+(q-t) 

I I 
n-<q-t)      n+Tq+tT     n-(q+t) m+(q-s)        m-(q-s) 

HI .        I I 
n+(p-t)        n-(pTt)    " n+(p+t) 

1       \ + /       I . I !_ _        I       \ 
n-(p++) I     lm+(p-+)        m-(p-t)        m+Tp+TT     m-(p+t)J 

/      I .        I I  I       \    . II  
ln+(q-s)     ■ n-(q-s) " n+üq+sT " n-lq+5>/        I m+(q-t) 

HI . I 
n+(p-s)        n-(p-s) 

n+Tp+sT   " n-(p+s) I' (III-20) 

where i corresponds to the pair of integers (p,  q),  and k corresponds 
to the pair of integers (s,t). 

I3(k,l) = I k = I and p = q (III-21) 

l3(k,i) =  1/2 

l3(k,l) = 0 

k ■  i  and p ¥ q 

k t \ 

(III-22) 

(III-23) 
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APPENDIX IV 
MISCELLANEOUS INTEGRALS 

For the integrals given in this appendix the functions, <i>i(a, ß) , are 
those given by Eqs.  (26) and (27). 

The integral I(i,m) as given by Eq. {24), 

I     R   r N 

l(i,m)=| J      «,(af0)  +       £    Cj(m)  *,(a,S> 
o    o   L 1=2 

L(a,0) +    y    Cj(i)    #,<a,B> 

L J-2 

do dß 
(IV-1) 

for the nonsquare cases becomes, on integration, 

1(1,m) ■ f| +    £    C,(m) Cj
(Jl) 

and for the square cases becomes 

l(£ .">  = l +    N       c* 

(IV-2) 

(IV-3) 

where 

C*.= C>> C|(»)  forp =q 

■I   C^C^ forp^q 

72 



AEDC-TR-69-115 

The integral for J\U) as given by Eq.  (30), 

I    R    r N "» 

JAU>  =      f   f    L,(a,ß) +  £  Cj(i)  *j(o,ß) 
o    o    L j=2 

da dB       (IV-4) 

for the nonsquare cases becomes, on integration, 

JA(i) = « 
r     N l 
L J-2 J 

(IV-5) 

and for the square cases becomes 

jx(« - Sp I + L     c/»/pq 
j=2 

(IV-6) 

The integral for Jr)(j&) as given by Eq.  (31), 

I    R 

'nU)  '      [  [       L. T. ?s(sft>  sin 5 ™ sin + -- 
"b  *b    s=l,3,5,.     +=1,3,5.. 

*;(a,8) +   Y,     CjU) <f,j(a'ß) 

j-2 

da dß 
(IV-7) 

for the nonsquare cases becomes,  on integration, 

N 

J„(i) -J 
J-2 

(IV-8) 

and for the square cases becomes 
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■[ Jn(£)  =  |2 fs(l,l>  +2     ^     Ts(p,q)  C 

j=2 

U) (IV-9) 

The bulk mean temperature which is defined as 

I    R 

I    I e(a,B,U u(a,ß> dadß 

9   (£)  = m 
o    o 
I     R 

(IV-10) 

J   Ju(a, B)    da dß 

o    o 

for the nonsquare cases becomes,  on integration, for the nonviscous 
component 

4RAGT    Jt 

w4 Z-,      IX 
n=l 

*2   +   ^ 
R2+l <L      I 

Cn> 

R2p3q+pq3 

,-Bn£/(IV-ll) 

Jm 

6m  (£)  = 4RPe     r- Cn) £r+E (n) R< 

i=2 R2p3q+pq3 

-BnC 
e      /    (IV-12) 

Jm 

and for the square cases becomes, for the nonviscous component, 

N 

6mx<0  = 
I6A6T 

4-    2-     9I>. 4 + 2     L 
n=l 

N Ä (n) 
Ci 

i=2 pVpq3 e -Bny (IV-13) 
m 

and for the viscous component 

N 

e    (FJ 
mn 

16 PP V in)    I       I     r* 
L     ?i\n J+2    L 
n=l 

N (n) 
I      I    r-       cr 'I 

x~2    p
3q+Pq3 . 

-Bn^- (IV-14) 
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The ratio of heat-transfer rate per unit length at the duct walls to 
the thermal conductivity may be written, for the a or short wall,  as 

I 
Qa/K =       f   Ü. 

/ 
da 

8=0 

(IV-15) 

and for the ß or long wall as 

Qß/K = 
/ 

21 
da dß 

a=0 

(IV-16) 

and becomes, on differentiation and integration, for the nonsquare cases 

N 
Y (n) 

Qa/K =   L>    a, 4- I ^ k 1=2 
e -Bne 

(IV-17) 

Qs/K 
N -i (n) t 2R + 2     )        C?

(n)    2* 

=2 

e-Bn£ (IV-18) 

where the coefficients a^n' become a-jx'11' anda^^n) for ^e nonviscous 
and viscous components, respectively,  and for the square cases becomes 

QB/K-Qg/K-    £ (n) 

n=l 

4 + 2 I 
i=2 t*a e"Bne     (IV-19) 

with the above-mentioned condition on the coefficient a^n'. 

With the evaluation of the heat-transfer rates, the Nusselt numbers 
may now be written, for the nonviscous component,  as 

(R+l)9mA 

(IV-20) 
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and for the viscous component as 

M     - h Li Nu    = 
n 

?5!1 + 9*l\  / (IV-21) ♦TU K  T   K i/cR+ne^ 
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